CONSUMER UNIT SAFETY CHECK-LIST

A consumer unit to BS EN 61439-3 is a particular type of single-phase distribution board defined by its specific conditional short-circuit rating of 16 kA. It is principally for use in household premises when supplied from a house service cut-out with a maximum 100 A fuse-link.

This safety check-list outlines simple measures to help you to safeguard against being deceived into buying counterfeit or non-compliant products.

Non-compliant products can present significant risks to people and property and carry serious consequences for the distributor and installer of such products. Non-compliant products may not provide protection against fire or electrocution, potentially resulting in lethal consequences. Choose your electrical consumer unit with care.

The use of individual components such as MCBs and RCDs complying with their respective product standard(s) does not indicate their compatibility when installed inside an enclosure. The product standard BS EN 61439-3 contains the performance and safety requirements for the integration of devices and components into an enclosure for household and similar installations. It covers subjects such as temperature rise tests to safeguard against overheating and a specific UK test in annex ZB which requires a 16 kA conditional short-circuit test qualifying it as a consumer unit, together with certain constructional requirements.
CHECK 2 – Is the consumer unit label correctly marked?

1. The following information must be provided on the designation label(s) together with specific location requirements (additional information is permitted).
 a) Label is visible and legible when the consumer unit is installed and in operation e.g. the label can be on the outside of the consumer unit or inside the door / lid intended to be opened in normal use.
 b) Consumer unit manufacturer’s name or trade mark.
 c) Type designation or identification or any other means of identification number, etc making it possible to obtain relevant information from the consumer unit manufacturer.
 d) Means of identifying date of manufacture (this can be a serial number, etc).
 e) BS EN 61439-3 or BS EN / IEC 61439-3.
 f) Rated current of the consumer unit using the symbol I_{na} e.g. I_{na} 100 A.

CHECK 1 – General checks

* Purchasing Channel – do you know and trust the person / organisation offering you this product?
* Can your supplier provide you with a copy of a verification certificate to prove conformity?
* Does the verification certificate come from a recognised laboratory / authority?
CHECK 3 – Is the consumer unit marked to meet legislative requirements?

a) Is the product CE marked? (Indicates conformity with all relevant European legislation). The CE marking can be on the consumer unit label.

b) Manufacturers shall indicate on the consumer unit their name, registered trade name or registered trade mark and the postal address at which they can be contacted. The ‘manufacturer’ is any natural or legal person who manufactures the consumer unit or has the consumer unit designed or manufactured, and markets it under his name or trade mark.

CHECK 4 – Is the consumer unit supplied with the correct information / documentation for safe selection and installation?

1. Relevant interface characteristics must be provided in the technical documentation supplied with the consumer unit. Some key safety characteristics to be included in the document are:

 a) Rated current of the consumer unit (I_{na}).

 - This is the maximum load current the consumer unit is designed to distribute through the main switch / incoming device.

 b) Rated current of a circuit (I_{nc}).

 - The outgoing protection devices such as MCBs or RCBOs would be assigned an I_{nc} for when they are installed in the consumer unit, this can be their marked rated current or a lower value.

 - This would apply to the RCCBs in a split load / dual consumer unit. The rated current I_{nc} of the RCCB when installed in the consumer unit may be lower than its unenclosed marked rated current according to its product standard rating.

 c) Rated diversity factor (RDF).

 - The rated diversity factor (grouping factor) is applied to a group of continuously and simultaneously loaded outgoing circuits. Domestic cooker, shower and socket circuits are not generally considered to be continuously loaded and therefore, are not normally de-rated by the RDF factor.

 g) Rated conditional short-circuit current of an ASSEMBLY (I_{cc}).

 A consumer unit is required to have a 16 kA rated conditional short-circuit current identified by the symbol I_{cc}.

CHECK 5 – Does the consumer unit enable conformity to certain 18th Edition wiring regulations?

 a) Within domestic (household) premises, consumer units shall comply with BS EN 61439-3 and shall: have their enclosure manufactured from non-combustible material, or be enclosed in a cabinet or enclosure constructed of non-combustible material. Ferrous metal, e.g. steel, is deemed to be an example of a non-combustible material.

 b) Devices and components installed in the consumer unit shall only be those declared suitable by the consumer unit manufacturer. The use of individual components complying with their respective product standard(s) does not indicate their compatibility when installed in a consumer unit, the consumer unit standard BS EN 61439-3 validates this. It should be noted that incompatible devices in assemblies could result in overheating, electric shock and / or failure.

 This relates to
 I. The practice of installing devices of one manufacturer into consumer units of another manufacturer.

 II. The practice of installing a newer model device e.g. MCB into an older version consumer unit, even if both are from the same manufacturer.
c) The main switch and RCCB shall be provided with overload protection by an overcurrent protective device e.g. upstream service fuse-link; unless the installation designer has determined that they cannot be overloaded. The simplest, most flexible method for RCCB overload protection in split-load / dual RCCB consumer units, to cover all the variables for domestic installations, such as different circuit load arrangements and varying service fuse-link current ratings is a split-load / dual RCCB consumer unit with 100 A* RCCBs. This does not preclude the use of 63 A* or 80 A* rated RCCBs where the electrical installation designer has determined their conformity in relation to the installation arrangements and overload protection.

To achieve overload protection of RCCBs or switches, the rated current of the overcurrent protective device shall be selected according to the manufacturer’s instructions.

Note *The RCCB enclosed rated current of the circuit inside the consumer unit is denoted by the symbol I_{nc} and should be stated in the documentation supplied with the consumer unit.

d) The correct type of RCD e.g. RCCB or RCBO shall be selected from the following types: AC, A, B or F. Further guidance on selecting the correct type of RCD can be found in BEAMA publication: THE RCD HANDBOOK from which the following table is extracted.

Note: Three phase applications are not applicable to consumer units.

Table: Examples of Type of Equipment / Load

<table>
<thead>
<tr>
<th>RCD</th>
<th>Examples of type of equipment / load</th>
</tr>
</thead>
</table>
| Type AC | Resistive, Capacitive, Inductive loads generally **without any electronic components**, typically:
- Immersion heater
- Oven/Hob with resistive heating elements
- Electric shower
- Tungsten & halogen lighting |
| Type A | Single phase with electronic components, typically:
- USB socket outlets (unless specifically advised by the USB socket outlet manufacturer that Type AC RCDs are suitable)
- Single phase inverters
- Class 1 IT and Multimedia equipment
- Power supplies for Class 2 equipment
- Appliances such as a washing machine that is not frequency controlled e.g. d.c. or universal motor
- Lighting controls such as a dimmer switch and home and building electronic systems LED drivers
- Induction hobs
- Electric Vehicle charging where any smooth DC fault current is less than 6 mA
**Type A is also suitable for Type AC applications.** |
| Type F | Frequency controlled equipment / appliances, typically:
- Some washing machines, dishwashers and driers e.g. containing synchronous motors*
- Some class 1 power tools
- Some air conditioning controllers using variable frequency speed drives
**Type F is also suitable for Type AC and Type A applications.** |
| Type B | Three phase electronic equipment typically:
- Inverters for speed control
- UPS
- Electric Vehicle charging where any smooth DC fault current is greater than 6mA
- Photovoltaic
**Power Electronic Converter Systems (PECS) typically:**
- Industrial machines
- Cranes
**Type B is also suitable for Type AC, Type A and Type F applications.** |
| Type B+ | Type B+ RCDs are not recognised in BS 7671 and do not have an international or harmonised (BS EN) standard.
**Power electronic converter PEC**
Device or part thereof for the purpose of electronic power conversion, including signalling, measurement, control circuitries and other parts, if essential for the power conversion function.
**Power electronic converter system PECS**
One or more power electronic converters intended to work together with other equipment. For PECS, if a Type B RCD is required, the product will be marked with the symbol PEC.

Manufacturer’s instructions should be taken into account.

DISCLAIMER: This publication is subject to the copyright of BEAMA Ltd. While the information herein has been compiled in good faith, no warranty is given or should be implied for its use and BEAMA hereby disclaims any liability that may arise from its use to the fullest extent permitted under applicable law.